Interventions in Committee
 
 
 
RSS feed based on search criteria Export search results - CSV (plain text) Export search results - XML
Add search criteria
Kathleen Cooper
View Kathleen Cooper Profile
Kathleen Cooper
2015-06-18 15:48
First of all, to tell you about the Canadian Environmental Law Association, we're a non-profit public interest organization specializing in environmental law. We're also a legal aid clinic within Ontario. We provide legal representation to low-income individuals and vulnerable communities.
Then we have law reform priorities, and in setting our strategic priorities, one of those is environment and human health. In deciding within that large topic how to set priorities, we take a population health approach, the same as Health Canada, the Public Health Agency of Canada, and public health agencies everywhere do. You set priorities by focusing on issues where large numbers of people are potentially or directly affected or where you have serious outcomes.
You can't get much more serious than a known carcinogen where there's strong science. Radon, as I'm sure you're going to hear later as well, is in a class by itself compared to most other environmental carcinogens. That's why we've focused on radon.
I'm going to speak today to a report we prepared last year, “Radon in Indoor Air: A Review of Policy and Law in Canada”. I believe you've been circulated the media release that was issued the day we released the report. That's all I was able to have translated given the time pressure of meeting with you today.
We canvassed policy and law across Canada at the federal and provincial levels and looked at jurisdictions and roles. We focused on public buildings and building codes, looked at other relevant provincial policy and law and the associated common law, and made a number of recommendations, but I'll focus today on just the recommendations we made with respect to the federal government.
Overall, our findings were that Canadians need better legal protection from radon. We found a patchwork of inconsistent and mostly unenforceable guidance.
For the federal government, we found that really important leadership has occurred, and Kelley Bush from Health Canada will provide some details on that for you today, although we definitely made recommendations for more that can be done. At the provincial and territorial level, where actually most jurisdiction lies, we found a wide range of laws that need to be updated or that contain gaps or ambiguities. There's very limited case law, which points to the need for improving a law or for law reform. I won't get into detail on what's been done at the federal level on radon, although the report does, because Kelley will be doing that for you later on.
Just in summary, under the national radon program there has been very valuable research, testing, and mapping of high -radon areas. The guideline for indoor radon was updated in 2007. The national building code was updated with respect to radon provisions, there's a certification program for radon mitigators, and there has been a national campaign to urge the testing by Canadians of their homes. It's recommended that every home in Canada be tested.
We recommended, to build on that important work, that there really is a logical next step here. Through the work of the Green Budget Coalition this past year, we recommended a tax credit for radon remediation. We recommended that the Income Tax Act add a tax credit for radon mitigation of up to $3,000 for individual Canadians, so long as it's done by a certified expert under the national program. That was not included in the budget, although we think it's still a very good idea. We had some very positive response from the federal officials we spoke to about it.
We also recommended that there be clearer messaging about radon, and that we use words like “radiation” and “radioactivity” because they are accurate and are what people understand more in terms of the risks of radiation and radon. We also recommended that there be better data sharing nationally between the federal government and the provinces and territories in terms of the testing that's done, along with the sharing of information that's paid for nationally, and that information be available publicly.
In terms of recommendations for federal action as well, we note that the David Suzuki Foundation report that came out just last month says the World Health Organization has recommended a lower level of 100 for indoor radon. Currently, our federal level is 200 becquerels per cubic metre. We definitely supported that recommendation and recommend that the federal government reduce the indoor radon guideline to 100.
The other two areas I want to touch on that are relevant to your investigation here have to do with the Canada Labour Code and the need to update it as well, and also the need for improving the uptake across Canada of the naturally occurring radioactive materials guidelines, the NORM guidelines. I'm going to speak to those two areas now.
Under the Canada Labour Code, there is the only legally enforceable limit for radon in Canada that's broadly applicable, but it's only for federally regulated workplaces and it remains at an outdated level of 800 becquerels per cubic metre. We think it should be brought down to the federal reference level of 200 becquerels per cubic metre to begin with, and we think that level should come down to 100 becquerels per cubic metre. On the updating of that level, apparently what was going to happen in 2015 now sounds like it's going to happen in 2016, so it would be great if your committee recommended speeding up that process.
In terms of the NORM guidelines, these are guidelines that were prepared by a federal-provincial-territorial committee. We interviewed occupational health and safety inspectors across Canada and found a lot of confusion and uncertainty about workplace radon rules or whether the NORM guidelines apply. In fact, they apply to every workplace in Canada. In any indoor space that is a workplace, including the room in which you are sitting, those guidelines apply.
However, it's a reactive, complaint-driven system. Inspectors get few or no complaints because there is a lack of awareness, so they don't take enforcement action. Also, some inspectors didn't think that radon was an occupational health and safety issue at all. They said that enforcement action was unlikely because the only agreed-upon levels for radiation are those for radiation-exposed workers. That is just not accurate, so we've made recommendations in response to that situation.
Turning to the recommendations we made with respect to the Canada Labour Code, as I've mentioned, it should be brought up to date swiftly. It's out of date by many years and still at that level of 800 becquerels per cubic metre.
With respect to radon, we recommended that the federal-provincial-territorial radiation protection committee, which deals with far more than radon—it deals with a whole manner of radiation exposure issues—convene a task force for occupational health and safety inspectors across the country so that there is clarity and there is a more generalized consistent application of those NORM guidelines to ensure worker health and safety. The consequences of that inconsistent application are that you're going to have uneven worker protection across the country and the possibility that people are overexposed, both in the workplace and in their homes, if they happen to be unlucky enough to have high radon levels in both of those indoor locations where they live and work. Related to that, we made a range of recommendations about provincial labour codes, which I won't get into.
In another area of occupational exposure, with respect to radon mitigators, we also recommended that CAREX Canada, who you're going to hear from later today, undertake, with the Canadian national radon proficiency program, research and dosimetry monitoring for radon mitigators so that we can make sure their workplaces are safe as well.
Just to recap on the findings in this report and to recommend to you to take up some of these recommendations in your deliberations on this topic, we found a need for greater legal requirements rather than guidance in this area for several reasons, including the need to underscore the seriousness of the problem and to support public outreach messages by the federal government and by other organizations who you're going to hear from today, including the Canadian Partnership for Children's Health and Environment.
Also, there's a need for legal requirements to require testing in public buildings and to ensure public access to that information. As well, there's the need to correct that inconsistent response among both the public health and the occupational health and safety inspectors and to provide them with tools to take action with respect to radon. As I mentioned, we found limited to no case law under either statutes or common law. We also found that improving the law or law reform is a better remedy than costly and situation-specific litigation to resolve radon problems.
Then, as I mentioned, there's a need for specific federal government action, including updating that federal guideline and putting in place a tax credit to help Canadians undertake radon mitigation when they have high levels, updating that Canada Labour Code, and ensuring the NORM guidelines are applied.
We've calculated the health care savings from prevented lung cancer deaths. If all homes in Canada were mitigated to the level of 200 becquerels per cubic metre, you'd see more than $17 million a year in savings through prevented lung cancer deaths. It likely would be double that if you were to reduce the level to 100 becquerels per cubic metre. Then, of course, anyone who works in cancer will tell you that the indirect costs are five times higher than the direct costs, so a lot of savings are possible there, along with the avoidance of the pain and suffering associated with lung cancer.
Tom Kosatsky
View Tom Kosatsky Profile
Tom Kosatsky
2015-06-18 16:43
You know, anyway, that smoking causes lung cancer in smokers. You probably also know that to a degree it causes lung cancer in people who live with smokers. I won't really talk about either of those things, but if you can get to the slide that's marked “Lung Cancer in Lifelong Non-Smokers”, you'll see that there is a new thing that's been described only over the last, about, 10 years, which is lung cancer in lifelong non-smokers, something which, before this committee invited me to speak with you, I didn't know much about. It turns out that it's a whole other disease. It has some similarities to smokers' lung cancer but some very important differences.
The geography is different. It's a huge phenomenon in Asia and in Asians in Canada. It has a female predominance, so there are far more lung cancers in female non-smokers than in male non-smokers. The age distribution is different, so it tends to present itself at a much younger age than smokers' lung cancers do. The cell types, the cancer types are different. The typical small cell squamous lung cancer that you see in smokers, you don't get in non-smokers. You get a whole different cell type and cell shape. The genetics are different, so there is some family relationship. It's not very strong, but there's a very strong genetic relationship based on genetic analysis. You can almost predict who's going to get it, which is a really important thing. Further, it tends to be much more symptomatic at diagnosis than is lung cancer in smokers. The five-year survival, oddly, is better, even though it presents later, for non-smokers' lung cancer than for smokers' lung cancer. In many ways it's a different disease.
Radon-related lung cancer is somewhere intermediate, because, as I'm going to say, most radon-related lung cancers occur in smokers. The question of whether it is more cost-efficient to stop smoking was right on the mark.
The next one is called “Principal risk factors (excluding occupational exposure)”, only because you asked. There are a number of conditions, including radon exposure, that are associated with non-smokers' lung cancer, like the history in your family. It's associated with hormone use in women. It's associated with environmental tobacco smoke. It's associated, to a degree, with air pollution. It's associated with cooking-oil fumes, so indoor cooking over a long period of time. It's associated in Asia and Africa with domestic heating by wood and wood products in the home. Those are also associated with lung cancer. Something that I didn't know much about before is that it's associated with lung infections like tuberculosis and other lung infections over a long period of time. It's also, like so many of the other bad things in life, associated with being poor. Getting lung cancer is associated with being poor, even if you eliminate all the other stuff. To a degree it's mitigated or prevented by a diet high in fruits and vegetables, so eat your leafy greens, eat your fruit, and you're less likely to get lung cancer no matter what else you do.
The next one is an American slide. It has a little American flag, and it looks at the attributable percentage of lung cancer by cause. For active smoking, it's 90%. For radon exposure in the U.S., it is between 9% and 15%, and in Canada it's estimated at 15%. For workplace carcinogen exposure, it's 10%. For air pollution, it's 1% to 2%. That adds up to more than 100% because, as you'll see, some of those causes add to or multiply each other. If you're exposed to radon, don't smoke. If you smoke, don't be exposed to radon.
Non-smokers' lung cancer is a really important cause of lung cancer. It's about number six in terms of all the causes. Radon-related lung cancer—this is U.S. data but for Canada it would be the same—is number eight. How could that be? It could be because smoking and radon exposure are interactive, so one multiplies or adds to the effect of the other. That leads, in any case, to non-smokers' lung cancer being a very bad issue.
Any radon exposure is bad news, not just at over 200. An artificial limit, no matter what it is, is not very useful for lowering the whole population's exposure. It would be better if we were all exposed to less radon rather than picking one area, maybe for convenience, or one level. It may be good for convenience, but it's not a really useful population health measure. For the whole population, it would be better if we were all exposed to less radon. It's a linear relationship. The more radon you're exposed to and the longer you're exposed, the more likely you are to get lung cancer.
The other thing is that, as I was saying, the more you smoke the more it interacts. On the last slide, which I made up using Canadian data, most radon-associated lung cancers occur in smokers. If you've never smoked, as you get up to high levels, like interior B.C. levels, of radon about 36 people out of 1,000 exposed to those levels would get lung cancer. On the other hand if there was no radon exposure and you did smoke, about 100 people would get lung cancer. If you add the two together, you're exposed to a high level of radon and you smoke, 270 people exposed to those two for their whole lives, smoking and radon, will get lung cancer. It's 270 out of 1,000 people; that's tremendous.
How can you lower it? The number one way to lower it is to stop smoking or to never have smoked. The number two way to lower it is to lower your radon exposure, and you'll do that for everybody in the population. The less smoking there is, the less radon there is, the less lung cancer there will be, to the point that as we lower the level of smoking exposure, radon will become a more important cause of lung cancer. But there will be a lot less lung cancer. If we eliminate smoking, there will be less lung cancer in general, but all of these other causes other than smoking will increase in focus. The big issue is the interaction, the doubling, tripling, quadrupling, or really octupling effect, because it's an eight-time effect, of smoking and radon will go away.
What's been the Canadian public health stance on radon? Before the year 2007, it was pretty passive and largely seen as a private issue. Health Canada was helpful. They gave advice when people asked for it. That was at the time of the 800 becquerels per metre cubed, or 800 disintegrations per second per metre cubed level, which is what a becquerel is. Then when the level was lowered a more active stance was taken. Health Canada was involved with large-scale testing across the country to establish a radon profile across the country so that we knew what our levels were likely to be. They were much more active in terms of giving advice, and with this lower guideline, they promoted it and they encouraged “test and remediate”. Test and remediate to me is not the way to go. The way to go is to build it out in the first place.
If you look at this complicated Ontario slide, Ontario looked at levels of radon across the province and how many cases of lung cancer could be saved by doing something for those above 200 becquerels per metre cubed, by adopting 100 becquerels per metre cubed, by adopting 50 becquerels per metre cubed—all of which are attainable—or by going to as low a level possible and getting close to outdoor air levels, which are relatively benign. At 200 becquerels per metre cubed, if every Ontario resident got their house from that point down to outdoor levels, 2% of all the lung cancers in Ontario would be averted. If you got down from current levels above 200, if everybody tested and remediated and they successfully got their house down to background or no radon, it would avert 2% of all lung cancers. If all houses in Ontario with any level of radon in them could get down to outdoor levels, we'd get rid of 13% of all Ontario lung cancer deaths. If there were a way to do it, why not do that? Why not get it down lower?
The next slide looks at the change in levels of radon over time. This is Dutch data. Canada would be the same. Yes, as we've made our buildings tighter, radon levels have increased. This is even more reason to look at the joint effects of building changes on radon.
Frank Clegg
View Frank Clegg Profile
Frank Clegg
2015-04-23 15:45
Mr. Chair and committee members, I'd like to thank you for the invitation to speak with you this afternoon and for deciding to invest committee time on Safety Code 6.
When I ran the Canadian operations for Microsoft, I learned that it is critical to focus on process. Today, as a board member for Indigo Books and Music, my role has shifted more towards governance and oversight. In both roles, process is critical to success. Government is the largest corporation of all, so process is of paramount importance. As someone who regularly examines success and failure, I believe I can explain why the Safety Code 6 process is a failure by all metrics and has left Canadians unprotected.
There is a book written by Nassim Taleb called The Black Swan, a focus on very low-probability, high-impact events that aren't supposed to happen. Oil spills, train derailments, and airplane crashes are some of the events in this category. Taleb calls these “black swan” events.
If one decides that all swans are white and refuses evidence of black swans, then one will conclude that all swans are white. Black swans are rare, but they do exist. Unfortunately, experts convinced themselves that these events had zero probability. They did not plan appropriately and people died.
The American Academy of Environmental Medicine is an international organization of physicians and scientists that has predicted, among other things, the rise in multiple chemical sensitivity, which is now protected in many public policies. Regarding the unprecedented increase in wireless devices, the academy forecasts “a widespread public health hazard that the medical system is not yet prepared to address”.
I believe Health Canada's analysis focuses on identifying and counting white swans, while ignoring black swan evidence. Health Canada's representative informed this committee on March 24:
...some of these studies report biological or adverse health effects of RF fields at levels below the limits in Safety Code 6, I want to emphasize that these studies are in the minority and they do not represent the prevailing line of scientific evidence in this area.
In other words, black swans exist.
In your handout—I don't know if you have it, as we put it in for translation—is a document entitled “Analysis of 140 Studies Submitted by Canadians for Safe Technology (C4ST) During the Public Comment Period on Safety Code 6”. A chart in that document shows that Health Canada accepts that there are in fact 36 studies all passing Health Canada's quality criteria showing harm at levels below Safety Code 6.
As a Canadian, I find this confusing. As an executive, I find it inexcusable.
Of the 36 studies Health Canada deemed satisfactory, cancer is linked in six of them. In 13 of them, the brain and/or nervous system is disrupted. In 16 studies, Health Canada admits that biochemical disruption occurs. Finally, seven high-level scientific studies indicate an effect on intellectual development and/or learning behaviour. All of these studies show impacts with radiation below Safety Code 6 limits. How was this black swan evidence evaluated?
In our two-year investigation, C4ST has determined that Health Canada doesn't even have the proper software required to access, summarize, and analyze the large number of relevant studies. If our group of learned and qualified volunteers can uncover 140 studies, how many more are being missed or ignored?
Health Canada references its weight-of-evidence approach. It is unclear how many studies you need to outweigh 36 studies that show harm, especially to children. I just can't fathom why Health Canada is not highlighting these studies and prioritizing their implications. Despite requests to publish the weight-of-evidence criteria as per international standards, Health Canada refuses to do so. Even the recent 2015 rationale document does not provide this critical information.
Health Canada dismisses scientific evidence unless it shows harm where the microwave levels are strong enough to heat your skin. The notion that microwaves are not harmful unless they heat your skin is decades out of date. The core premise of this white swan dates back to Einstein's theory that non-ionizing radiation cannot cause harm, or if it does, it must heat tissue to do that. Albert Einstein passed away the same year Steve Jobs was born. To think that science has not evolved since then is classic white swan thinking. It's part of a process predetermined to fail.
Health Canada says on its website today that there is no chance that Wi-Fi or cellphones can harm you because it has studied all the science, but when pressed under oath, Health Canada officials give a more fulsome answer. In Quebec Superior Court in September 2013, Health Canada senior scientist James McNamee admitted that Health Canada only assesses risk based on the thermal effect, i.e., the heating of tissue.
Unfortunately, Canada has not invested the necessary time nor had the balanced opinion of experts necessary to undertake a proper review. Our research has uncovered that the Health Canada author of Safety Code 6 has published papers demonstrating his bias towards this topic.
In a few hours over three days, this health committee has spent more time speaking with scientific experts who believe there is harm from wireless radiation below Safety Code 6 than all of Health Canada combined. You can't find black swans when you don't talk to the experts who've identified them.
There is a fundamental business rule: you can't manage what you don't measure. It is clear that Health Canada not only doesn't follow that rule but even resists it. A memo obtained under access to information to the Minister of Health in March of 2012 revealed that Health Canada “does not support the recommendation to establish an adverse reaction reporting process specifically for RF exposures”. The memo goes on to state that “consumer complaints...may be directed to...the web-based system...under the...Canada Consumer Product Safety Act”. This is an inadequate solution and, I believe, a missed opportunity.
I refer you to the C4ST fact sheet. I think you have it. I'd like to highlight three examples from that fact sheet: Health Canada's Safety Code 6 is among the countries with the worst guidelines in the world; Canada has fallen behind countries such as France, Taiwan, and Belgium in protecting Canadians; and finally, Health Canada wasted over $100,000 of taxpayers' money, as the Royal Society report is not an independent review.
Health Canada also states that Safety Code 6 is a guideline and that other organizations at the provincial and local levels of government are free to implement lower levels as they see fit; however, that's not the reality of what happens. We have witnessed school boards, power and water utilities, Industry Canada, and manufacturers depending on Health Canada's analysis, and frankly, abdicating to it. They don't perform their own analysis.
Safer solutions exist. There are several situations in Canada regarding cell towers where the proponents have voluntarily offered to restrict radiation exposure, in some cases to thousands of times less than Safety Code 6. There is a solution in Iowa for smart meters that use a wired meter that provides a safer, more secure solution at a lower cost.
Given that our track record in North America is not successful regarding such products as tobacco, asbestos, BPA, thalidomide, DDT, urea-formaldahyde insulation, and many others, use of the precautionary principle of prudent avoidance should be recommended until the science proves beyond reasonable doubt that there is no potential for harm.
For the last three years, science has published a new study every month that shows irreparable harm at levels below Safety Code 6. That is why we're asking the committee to take three decisive steps.
First, conduct a national campaign to educate Canadians about methods to minimize exposure to RF radiation, ban Wi-Fi in day care centres and preschools, and ban the marketing of wireless devices to children.
Second, protect individuals who are sensitive to RF radiation by accommodating them with safer levels of wireless exposure in federal workplaces and federal areas of responsibility.
Third, and finally, create an adverse reporting system for Canadians and a publicly available database to collect improved data regarding potential links between health effects and exposure to RF radiation.
Parallel to the above, recommend that Health Canada conduct a comprehensive systematic review, subject to international standards, regarding the potential harmfulness of RF radiation to human health, with a scientific review panel that is balanced in opinion. It was a textbook case of black swan thinking that has led to this failure of Safety Code 6.
In conclusion, C4ST volunteers found 36 black swans that Health Canada agrees are high quality. How many would be available if Health Canada sincerely looked? Better yet, how many black swans will it take before Health Canada takes serious actions? Thank you very much.
Paul Demers
View Paul Demers Profile
Paul Demers
2015-03-24 15:53
Thank you, Mr. Chair and members of the committee, for inviting me here today. I know I've been asked to come here today because I chaired the expert panel of the Royal Society of Canada on Safety Code 6. But I thought I'd start by saying a few other things about my background.
I'm the director of the Occupational Cancer Research Centre, which is based in Cancer Care Ontario, a provincial agency that is also funded by the Ontario Ministry of Labour and the Canadian Cancer Society. I'm also a member of the faculty of the schools of public health of the University of Toronto and the University of British Columbia.
I am an epidemiologist, so I study impacts of different types of health effects upon populations of people, but my primary area of research is on the risk of cancer associated with workplace chemicals, dust, and radiation, although I have done research on a number of other diseases as well as on environmental exposures. However, I want to state that, unlike Dr. Prato, I'm not an expert specifically in the area of electromagnetic fields and have never actually done research on radio frequency radiation.
As you know, at the request of Health Canada the Royal Society convened an extra panel to conduct a review of the 2013 draft of Safety Code 6. I was asked to chair that panel because I had no conflicts of interest and because of my expertise in cancer epidemiology, which was identified as one of the areas for which they wanted expertise on the panel.
I was also asked because of my experience sitting on similar panels for the International Agency for Research on Cancer, the U.S. national toxicology program, the U.S. Institute of Medicine, which is part of the National Academy of Sciences, and the Council of Canadian Academies, the latter two being fairly similar to the Royal Society of Canada in the way they operate.
I should also mention, although you may be aware of this already, that I was the second chair of the panel. The first panel resigned because of a perceived conflict of interest, and I took over as chair of the panel about midway through. But I also want to state that I'm here as individual and am not representing the Royal Society of Canada or any other organization at this point.
The panel was presented with five specific questions, and I'm going to over very briefly our responses to those five questions. Overall, they were all dealing with whether or not there were any established health effects at levels below those recommended by Safety Code 6 and related types of questions.
To answer these questions, we did a review of recently published studies in the area on a wide range of different types of health effects. We also looked at many of the international reviews, which I think have already been mentioned here today. These are conducted on a pretty regular basis by many agencies around the world.
Because we were asked to look in particular at established health effects, we defined an established adverse health effect as something that has been seen consistently or been observed consistently in multiple studies with a strong methodology. So we had a fairly flexible definition, but still it required an effect's being observed in not just a single study.
Before I get into the questions—because I'm actually going to read out the questions we were given—I want to explain two different terms that are used quite a bit in those questions, namely the definition of what basic restrictions are and what reference levels are.
Basic restrictions in Safety Code 6 are things that happen within the body, either heating or induced fields within the bodies, or things like those. Many of the actual limits are set based upon that. Because these are not easily measured, the code also uses reference levels, which are things you can measure outside of the body using a meter. They are much easier for regulatory purposes. You will often see that the questions are phrased in terms of these basic restrictions and reference levels.
Our first question was, do the basic restrictions specified in Safety Code 6 provide adequate protection for both workers and the general population from established adverse health effects of radio frequency fields? Our conclusion was that yes, they provided that protection. Specifically, Safety Code 6 was designed to protect against two kinds of established health effects, thermal effects and peripheral nerve stimulation. The margins of safety, we concluded, appeared to be quite protective. For peripheral nerve stimulation, it was a safety factor of five for the workplace or controlled environments, and a 10-fold factor for uncontrolled environments, which are closer to what you would experience in the general public. For thermal effects, the safety factor was 10-fold for workplaces and 50-fold for the general public.
The second question that we were given was, are there any other established adverse health effects occurring at exposure levels below the basic restrictions on Safety Code 6 that should be considered in revising the code? Our conclusion to that question was no. The panel reviewed the evidence for a wide variety of health effects, including cancer, cognitive and neurologic effects, male and female reproductive effects, development effects, cardiac function, heart rate variability, electromagnetic hypersensitivity, and adverse effects in susceptible areas of the eye. Although research in many of these areas—important research, I think—continues, we were unable to identify any adverse health effects occurring at levels below those allowed by Safety Code 6.
Our third question related specifically to the eye: Is there sufficient scientific evidence upon which to establish separate basic restrictions or recommendations for the eye? We concluded that no there wasn't sufficient evidence. Recent studies do not show adverse health effects in susceptible regions of the eye at exposure levels below those proposed by Safety Code 6 for the head, neck, and trunk. Therefore we recommended that it not contain separate basic restrictions for the eye.
The fourth question was perhaps a bit more complex: Do the reference levels established in Safety Code 6 provide adequate protection against exceeding the basic restrictions? That is, do the levels that are proposed as limits for things you can measure outside the body actually protect against the target health effects the code is trying to prevent within the body? Our conclusion was that for most frequencies, yes, reference levels were adequate, but that there were some regions where compliance with the reference levels may not ensure compliance with the basic restrictions. We recommended that the proposed reference levels in Safety Code 6 be reviewed by Health Canada to make them somewhat more restrictive in some frequency ranges to ensure a larger safety margin for Canadians, including newborn infants and children.
This recommendation took into account recent studies that we call dosimetry studies, at least one of which was published after Health Canada produced the proposed Safety Code 6.
Our fifth question was, should additional precautionary measures be introduced into Safety Code 6 exposure limits? I'll state that although there was a range of opinions on the panel regarding precautionary efforts, overall the panel believed that Safety Code 6 was well-designed to avoid established health effects; we did not have any science-based recommendations for precautionary measures to lower the limits. I'll say that it was for the reasons that I think Dr. Prato explained quite well, which is that we couldn't, at least in looking at the study, say that the evidence tells us that we should lower it it in such a fashion. However, we did recommend a number of other measures that can and should be taken by Health Canada.
I'll read some of them here now.
First was to investigate the problems of individuals with what's called electromagnetic hypersensitivity—it goes by other names as well, IEI-EMF, and things like that—with the aim of understanding their health conditions and finding ways to provide effective treatment.
Second was to develop a procedure for the public to report suspected disease clusters and a protocol for investigating them.
Third was to expand Health Canada's risk communication strategy to address consumer needs for more information around radio frequency radiation.
Fourth was to identify additional practical measures that Canadians can take to reduce their own exposure.
These recommendations are really in response to the public input that we received as part of the panel. We also had a number of different research recommendations. In particular, if one has the chance to read the report, you'll notice that each section on a particular health effect usually ends by basically pointing out that more research is needed on that health effect.
A few of the specific ones are that Health Canada should aggressively pursue research aimed at clarifying the radio frequency radiation cancer issue, which would allow the government to develop protective measures if the risk were substantiated; and that Health Canada should pursue research to expand our current understanding of possible adverse health effects of exposure to radio frequency radiation at levels below those allowed by Safety Code 6.
The response to the panel's report from Health Canada—
Results: 1 - 4 of 4