Interventions in Committee
 
 
 
RSS feed based on search criteria Export search results - CSV (plain text) Export search results - XML
Add search criteria
Magda Havas
View Magda Havas Profile
Magda Havas
2015-04-23 15:55
Thank you very much for the invitation to address you today. My name is Dr. Magda Havas and I'm an associate professor of environmental and resource studies at Trent University in Peterborough, Ontario.
For the past 25 years I have been teaching university students about the biological effects of electromagnetic fields and electromagnetic radiation, which are collectively referred to as “electrosmog”. It is my belief that electrosmog is the emerging public health issue, due largely but not entirely to the rapid proliferation of wireless technology. Concern among health care practitioners and the public is growing as chronic illness increases and health care costs rise.
Since 2000 I have been invited to give more than 300 lectures at medical conferences, at universities, to congressional and Senate staff in the United States, and to community groups concerned with Wi-Fi in schools and antennas in their neighbourhoods. In 2002 Charles Caccia invited me to present to the environment committee of the House of Commons. In 2010 I appeared before the HESA committee to discuss the very same issue we are discussing today. In 2013 we presented to the Canadian Medical Association and the Royal College of Physicians and Surgeons about the harmful effects of electrosmog and the need for public protection.
I began my career as an environmental toxicologist in the mid-1970s, and the emerging issue at that time was acid rain. I was one of the scientists who studied the damage that acid rain does to forests and lakes. My peer-reviewed, published research and that of other scientists helped bring in clean air legislation, referred to as the acid rain accord, signed into international law by Prime Minister Mulroney and President Bush in 1991. This accord guaranteed cleaner air and a healthier environment for millions of Canadians and Americans, and protected our aquatic and terrestrial ecosystems.
We need similar steps to be taken for electrosmog legislation. That accord was due to the work of the Canadian Coalition on Acid Rain, federal and provincial ministers of the environment like Charles Caccia and Jim Bradley, and a large number of scientific studies from eastern North America and north-central Europe. The accord came 15 years after my studies on the effects of acid rain began. We were able to get clean air legislation because members of Parliament based their policy decisions on the science and not on misinformation provided by industry representatives.
At that time, acid rain was not taken seriously. Industry scientists repeatedly claimed that acid rain did not exist or was natural, and was not responsible for the loss of fish and the death of trees. This denial of a problem is common in health and environmental issues that have financial consequences for those generating the pollution. We have seen it with asbestos, DDT, lead, cigarettes, and now electrosmog.
Today I find myself in a situation similar to the one I was in with acid rain. We have industry scientists who repeatedly claim that electromagnetic pollution does not cause cancer or adverse effects on health. These wireless industries are able to hide behind Health Canada's Safety Code 6, which affords more protection to them than to the public.
Schools that have installed Wi-Fi, the telecommunications industry that installs antennas on hospitals and in residential communities, and provincial and municipal governments that do not have expertise in this area, all hide behind Health Canada's Safety Code 6, with the false perception that they are being protected. What they don't realize is that this guideline was designed to protect military personnel from heating of tissue averaged over a six-minute period. It was not intended to protect the infant in the crib lying next to a wireless baby monitor that emits microwave radiation for 12 hours a day.
The science that I teach dates back to the 1940s, when U.S. Navy labs documented illness among radar equipment operators. Back then it was called microwave illness. Today it is called electrohypersensitivity. Radar operators were made sick by the same frequencies later used for the microwave oven, which originally was called the radar range. The same frequencies are now used in Wi-Fi devices. We wouldn't want to live near a radar installation, yet we generate radar frequencies in our home with our wireless technology.
Symptoms of electrohypersensitivity include headaches, chronic pain, chronic fatigue, sleeping problems, difficulty concentrating, poor short-term memory, mood disorders including depression and anxiety, dizziness, nausea, and tinnitus. As many as 3% of the population, one million Canadians, have EHS symptoms that are so severe they are unable to function in our modern world.
Another 35%, 10 million Canadians, have mild to moderate symptoms. These symptoms resemble aging and I refer to electrohypersensitivity as rapid aging syndrome.
My research shows that radio frequency radiation from a cordless phone at levels well below 1% of Safety Code 6 causes an irregular or rapid heart rate in those who are sensitive. This is called tachycardia. In a few individuals, their heart rate increases from 60 beats per minute to 100 beats per minute while they're lying down on a bed without knowing whether the device is turned on or off. The tachycardia is often associated with anxiety. The feeling is that they are experiencing a heart attack.
Dr. Stephen Sinatra, an American cardiologist, believes that minor heart abnormalities, one of which is called Wolff-Parkinson-White syndrome, affects one in 700 children. Combined with exercise and exposure to microwave radiation, such as Wi-Fi or nearby cellphone antennas, this creates the perfect storm that could result in cardiac arrest.
The population in Ottawa elementary schools, with approximately 143,000 students, may have as many as 200 students who are at risk because of this particular heart effect if they have Wi-Fi in their school environment. In the early studies with radar operators, doctors recommended that workers be screened for heart irregularities before working with microwave radiation. Perhaps students should be screened before attending Wi-Fi-equipped schools.
As part of my research, I am trying to find biomarkers for electrohypersensitivity so that doctors can be better equipped to diagnose the environmental illness. So far we have found several—heart rate, heart rate variability, blood viscosity, sugar among diabetics, and muscular coordination problems with people who have multiple sclerosis. More biomarkers are needed. Unlike epidemiological studies that document an association between an agent and an outcome, our studies demonstrate a cause and effect relationship.
Experts who testify at hearings such as this have general or specific backgrounds in science or medicine. Those with a general background and no experience with their patients, or through their own research, are likely to provide misleading information. The reason for this is that we are going through a paradigm shift in our understanding of the relationship between electromagnetic energy and how the human body works.
We now recognize that our cells and organs communicate with each other using electromagnetic impulses rather than just chemical messengers. Any signal that interferes with that communication may adversely affect the health of individuals. The effects are a function of not only intensity, but also frequency modulation waveform.
What you see in front of you, in the bottom slide, is a picture of my blood under the microscope. The cells around.... A few are connected. Most of them are free. This looks like fairly healthy blood.
After I use a computer for 50 minutes, I get the blood you see in the top left-hand corner. The blood cells are sticking together. Ten minutes after using a cordless phone, my blood becomes very sticky, very viscous, and it doesn't distribute the oxygen in my body the way it should. This is one of the symptoms of electrohypersensitivity.
Doctors are not taught in medical schools about electrosmog, as it is a relatively recent problem, nor are they taught how to diagnose electrohypersensitivity. For them, this illness does not exist. When doctors can't identify an illness they often assume it is psychological. I have spoken to psychiatrists who tell me that they are regularly sent patients who have physiological problems and not psychological ones. Some of these people are electrically hypersensitive.
Industry scientists often refer to studies that report that subjects who claim to have EHS are unable to subjectively determine whether a device is on or off. They falsely conclude that this means the person is not electrically hypersensitive. The flawed assumption here is that perception is not necessary for a physiological action to occur and that reactions occur immediately. Neither are true.
We can be outside on a sunny day when the sun is not visible or hot and still get a sunburn. We do not perceive ultraviolet radiation. The sunburn develops over time. Sensitivity to the sun varies among individuals, as does electrohypersensitivity. Indeed, sensitivity to the sun is a good analogy for EHS. The longer you are exposed, the more severe the sunburn.
If you look at the 20 years it took for acid rain and the 50 years it took to address tobacco, the outlook for wireless technology is bleak. That's because it's not one culprit. There are many things in our environment that generate electrosmog.
The bottom line is that levels of microwave radiation are currently well above background levels and continue to increase as more wireless devices are brought to market. These levels, despite being below Safety Code 6, are adversely affecting human health. We can wait another five years, or we can take steps in the right direction to reduce our exposure. If we err, we should err on the side of caution.
I have a quick demonstration if you give me half a minute.
Paul Demers
View Paul Demers Profile
Paul Demers
2015-03-24 15:53
Thank you, Mr. Chair and members of the committee, for inviting me here today. I know I've been asked to come here today because I chaired the expert panel of the Royal Society of Canada on Safety Code 6. But I thought I'd start by saying a few other things about my background.
I'm the director of the Occupational Cancer Research Centre, which is based in Cancer Care Ontario, a provincial agency that is also funded by the Ontario Ministry of Labour and the Canadian Cancer Society. I'm also a member of the faculty of the schools of public health of the University of Toronto and the University of British Columbia.
I am an epidemiologist, so I study impacts of different types of health effects upon populations of people, but my primary area of research is on the risk of cancer associated with workplace chemicals, dust, and radiation, although I have done research on a number of other diseases as well as on environmental exposures. However, I want to state that, unlike Dr. Prato, I'm not an expert specifically in the area of electromagnetic fields and have never actually done research on radio frequency radiation.
As you know, at the request of Health Canada the Royal Society convened an extra panel to conduct a review of the 2013 draft of Safety Code 6. I was asked to chair that panel because I had no conflicts of interest and because of my expertise in cancer epidemiology, which was identified as one of the areas for which they wanted expertise on the panel.
I was also asked because of my experience sitting on similar panels for the International Agency for Research on Cancer, the U.S. national toxicology program, the U.S. Institute of Medicine, which is part of the National Academy of Sciences, and the Council of Canadian Academies, the latter two being fairly similar to the Royal Society of Canada in the way they operate.
I should also mention, although you may be aware of this already, that I was the second chair of the panel. The first panel resigned because of a perceived conflict of interest, and I took over as chair of the panel about midway through. But I also want to state that I'm here as individual and am not representing the Royal Society of Canada or any other organization at this point.
The panel was presented with five specific questions, and I'm going to over very briefly our responses to those five questions. Overall, they were all dealing with whether or not there were any established health effects at levels below those recommended by Safety Code 6 and related types of questions.
To answer these questions, we did a review of recently published studies in the area on a wide range of different types of health effects. We also looked at many of the international reviews, which I think have already been mentioned here today. These are conducted on a pretty regular basis by many agencies around the world.
Because we were asked to look in particular at established health effects, we defined an established adverse health effect as something that has been seen consistently or been observed consistently in multiple studies with a strong methodology. So we had a fairly flexible definition, but still it required an effect's being observed in not just a single study.
Before I get into the questions—because I'm actually going to read out the questions we were given—I want to explain two different terms that are used quite a bit in those questions, namely the definition of what basic restrictions are and what reference levels are.
Basic restrictions in Safety Code 6 are things that happen within the body, either heating or induced fields within the bodies, or things like those. Many of the actual limits are set based upon that. Because these are not easily measured, the code also uses reference levels, which are things you can measure outside of the body using a meter. They are much easier for regulatory purposes. You will often see that the questions are phrased in terms of these basic restrictions and reference levels.
Our first question was, do the basic restrictions specified in Safety Code 6 provide adequate protection for both workers and the general population from established adverse health effects of radio frequency fields? Our conclusion was that yes, they provided that protection. Specifically, Safety Code 6 was designed to protect against two kinds of established health effects, thermal effects and peripheral nerve stimulation. The margins of safety, we concluded, appeared to be quite protective. For peripheral nerve stimulation, it was a safety factor of five for the workplace or controlled environments, and a 10-fold factor for uncontrolled environments, which are closer to what you would experience in the general public. For thermal effects, the safety factor was 10-fold for workplaces and 50-fold for the general public.
The second question that we were given was, are there any other established adverse health effects occurring at exposure levels below the basic restrictions on Safety Code 6 that should be considered in revising the code? Our conclusion to that question was no. The panel reviewed the evidence for a wide variety of health effects, including cancer, cognitive and neurologic effects, male and female reproductive effects, development effects, cardiac function, heart rate variability, electromagnetic hypersensitivity, and adverse effects in susceptible areas of the eye. Although research in many of these areas—important research, I think—continues, we were unable to identify any adverse health effects occurring at levels below those allowed by Safety Code 6.
Our third question related specifically to the eye: Is there sufficient scientific evidence upon which to establish separate basic restrictions or recommendations for the eye? We concluded that no there wasn't sufficient evidence. Recent studies do not show adverse health effects in susceptible regions of the eye at exposure levels below those proposed by Safety Code 6 for the head, neck, and trunk. Therefore we recommended that it not contain separate basic restrictions for the eye.
The fourth question was perhaps a bit more complex: Do the reference levels established in Safety Code 6 provide adequate protection against exceeding the basic restrictions? That is, do the levels that are proposed as limits for things you can measure outside the body actually protect against the target health effects the code is trying to prevent within the body? Our conclusion was that for most frequencies, yes, reference levels were adequate, but that there were some regions where compliance with the reference levels may not ensure compliance with the basic restrictions. We recommended that the proposed reference levels in Safety Code 6 be reviewed by Health Canada to make them somewhat more restrictive in some frequency ranges to ensure a larger safety margin for Canadians, including newborn infants and children.
This recommendation took into account recent studies that we call dosimetry studies, at least one of which was published after Health Canada produced the proposed Safety Code 6.
Our fifth question was, should additional precautionary measures be introduced into Safety Code 6 exposure limits? I'll state that although there was a range of opinions on the panel regarding precautionary efforts, overall the panel believed that Safety Code 6 was well-designed to avoid established health effects; we did not have any science-based recommendations for precautionary measures to lower the limits. I'll say that it was for the reasons that I think Dr. Prato explained quite well, which is that we couldn't, at least in looking at the study, say that the evidence tells us that we should lower it it in such a fashion. However, we did recommend a number of other measures that can and should be taken by Health Canada.
I'll read some of them here now.
First was to investigate the problems of individuals with what's called electromagnetic hypersensitivity—it goes by other names as well, IEI-EMF, and things like that—with the aim of understanding their health conditions and finding ways to provide effective treatment.
Second was to develop a procedure for the public to report suspected disease clusters and a protocol for investigating them.
Third was to expand Health Canada's risk communication strategy to address consumer needs for more information around radio frequency radiation.
Fourth was to identify additional practical measures that Canadians can take to reduce their own exposure.
These recommendations are really in response to the public input that we received as part of the panel. We also had a number of different research recommendations. In particular, if one has the chance to read the report, you'll notice that each section on a particular health effect usually ends by basically pointing out that more research is needed on that health effect.
A few of the specific ones are that Health Canada should aggressively pursue research aimed at clarifying the radio frequency radiation cancer issue, which would allow the government to develop protective measures if the risk were substantiated; and that Health Canada should pursue research to expand our current understanding of possible adverse health effects of exposure to radio frequency radiation at levels below those allowed by Safety Code 6.
The response to the panel's report from Health Canada—
Results: 1 - 2 of 2